EDMI Course Micro-617 – 3 Credits

Energy Autonomous Wireless Systems (EAWS)

Prof. Catherine Dehollain

EPFL-IEL RFIC

Prof. Anja Skrivernik

EPFL-TCL LEMA

Prof. Franco Maloberti

Guest Lecturer, Univ. of Pavia

Prof. Andreas Burg

EPFL-IEL TCL

Low Power Digital and System Design EAWS (A. Burg, 4+4h)

Course contents

Objectives:

PART-1

- To provide a basic introduction to power consumption in digital VLSI circuits
- To give an overview of the key techniques for designing low power digital VLSI circuits
- To raise awareness and introduce potential solutions for the difficulties associated with ultra-low-power design in advanced technology nodes

PART-2

- Provide an example of a low-power system design (ECG monitoring)
- Get acquianted with the anatomy of a basic low-power embedded system based on commercial off the shelf (COTS) components
- Lear about the various system components and modes to be able to make design decisions when using or selecting an embedded platform
- Collect some initial experience in using an embedded low-power system and its low-power modes

Energy Autonomous Wireless Systems

LESSON 2b – Low Power System Design

Prof. Andreas Burg

TOC: Low Power System Design

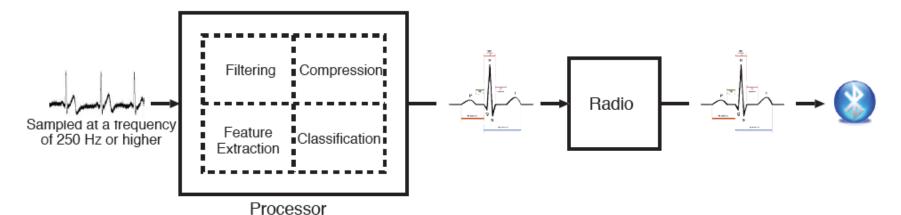
Case study: Energy Consumption of Wireless Transmission

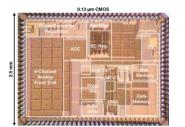
Embedded Low-Power Microcontrollers

- Overview and Low-Power Modes
- Key Components

Hands-on Example: EFM32 ULP MCU

Power Consumption and Low-Power Modes


Case study: energy consumption analysis and optimization of wireless transmission


7 Reducing Radio Interface Power win On-Node Processing

Reducing the amount of data to be transmitted generally reduces radio interface power consumption, but requires

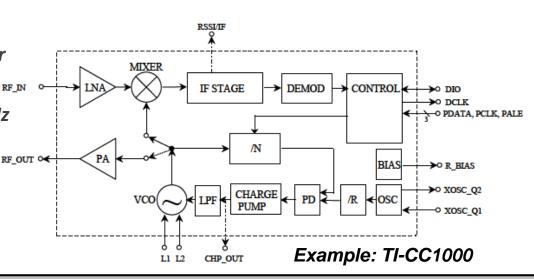
- reasonably efficient radio protocol (power-down between bursts)
- processing resources on the node to reduce data to the essence

Zhang (2012)

IMEC cardiac patch (Yazicioglu,2009)

Holst Centre (Masse, 2010-13)

Shimmer (shimmerresearch, 2010-13)


7 A Simple Radio Interface

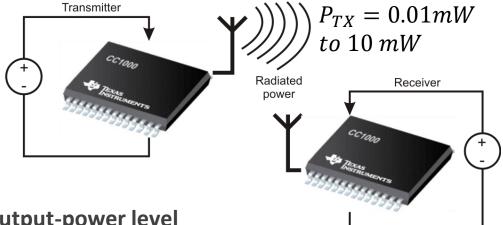
- Consider a system that comprises only the physical layer
- Simple RF radios are available as discrete components
 - TI, Analog Devices, Freescale, Microchip (often combined in SoCs with low power uControllers)

- A simple single-chip (UHF) transceiver
 - RF frequency synthesis from a low-frequency reference quartz (few MHz)
 - Modulation: alters the RF signal according to the data
 - Demodulation: analyzes the received signal to recover the data
 - Received signal strength indicator (RSSI): detects presence of an RF signal and its strength
- Example: TI-CC1000
 - Combined transmitter and receiver
 - Software-programmable freq.
 band: 315 / 433 / 868 and 915 MHz
 - FSK modulation up to 76.8 kbit/s
 - Programmable output power

7 Radio Interface: Power Consumption

Parameter	Typ.	Max.	Unit
Current Consumption, receive mode 433/868 MHz	7.4/9.6		mA
P=0.01mW (-20 dBm)	5.3/8.6		mA
P=0.3 mW (-5 dBm)	8.9/13.8		mA
P=1 mW (0 dBm)	10.4/16.5		mA
P=3 mW (5 dBm)	14.8/25.4		mA
P=10 mW (10 dBm)	26.7/NA		mA
Current Consumption, crystal osc.	30 80 105		μΑ μΑ μΑ
Current Consumption, crystal osc. And bias	860		μА
Current Consumption, crystal osc., bias and synthesiser, RX/TX	4/5 5/6		mA mA

• Transmitter W_{TX} :


433 MHz: 16 – 80.1 mW

- 868 MHz: 25.8 - 76.2 mW

• Receiver W_{RX} :

433 MHz: 22.2 mW

868 MHz: 28.6 mW

Transmitter

- Power consumption depends on the output-power level
- Radio output-power level P_{TX} is far below transmitter power consumption W_{TX}

Receiver

Power consumption is comparable to the transmitter (at low power levels)

7 Radio Interface: Energy Efficiency

- For sensor node applications, power consumption is not the most relevant metric
 - Energy efficiency relates battery lifetime to the amount of data that can be transmitted
 - Energy efficiency is measured in Joules per (information) bit [J/bit] and depends on the active power consumption and the data rate

$$E\left[\frac{nJ}{bit}\right] = W_{Tx/Rx} \cdot T_{bit} = \frac{W_{Tx/Rx}}{f}$$

Increasing the transmission rate f

Data rate Congration

- improves energy efficiency, but also reduces radiated energy per information bit
- Receiver: sensitivity drops for higher rates

	Data rate	Separation		433 IVIDZ		
	[kBaud]	[kHz]	NRZ mode	Manchester mode	UART mode	NRZ mode
<u>_</u>	0.6	64	-113	-114	-113	-110
higher rates	1.2	64	-111	-112	-111	-108
	2.4	64	-109	-110	-109	-106
	4.8	64	-107	-108	-107	-104
toward	9.6	64	-105	-106	-105	-102
<u>a</u>	19.2	64	-103	-104	-103	-100
ا ح ق	38.4	64	-102	-103	-102	-98
→ 小	76.8	64	-100	-101	-100	-97
•		e current umption		9.3 mA		

toward better sensitivity

868 MHz

Manchester

mode

-111

-109

-107

-105

-103

-101

-99

-98

11.8 mA

UART

mode

-110

-108

-106

-104

-102

-100

-98

-97

7 Radio Interface: Energy Efficiency

- Maintain a given signal to noise ratio as data rate f increases
 - Need to increase transmit power to maintain constant received energy per bit
 - From an information theoretic perspective we would expect

$$\frac{P_{RX}}{f} \equiv const. \Rightarrow P_{TX} \sim f \qquad W_{TX} \sim P_{TX} \sim f$$

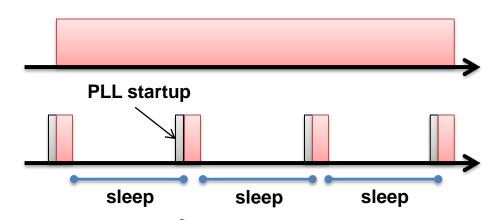
• "Luckily" reality is different: $P_{TX} < O(f)$ and $W_{TX} < O(P_{TX}) < O(f)$

Rate f	Duty cycle	Tx power	Sensitivity	Margin	Tx	Rx
4.8 kbit/s	1	-5 dBm	-107 dBm	102 dB	26.7 mW 1.2 x	22.2 mW
38.4 kbit/s	1/8	0 dBm ♥	-102 dBm	102 dB	31.2 mW	22.2 mW

Overall improvement in energy efficiency with higher data rates

Rate <i>f</i> [kbps]	Tx energy efficiency	Rx energy efficiency
4.8 kbit/s	5.6 uJ/bit	4.6 uJ/bit
38.4 kbit/s	0.8 uJ/bit	0.6 uJ/bit

7 Radio Interface: Energy Efficiency



- Constant throughput requirement
 - Higher rate allows to duty-cycle
 both transmitter and receiver

Duty cycle	Rate f	Тх	Rx
1	4.8 kbit/s	26.7 mW	22.2 mW
1/8	38.4 kbit/s	3.9 mW	2.8 mW

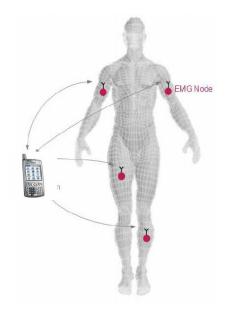
 Duty cycling is limited by the startup/ locking time of the frequency synthesizer (typ: 0.1-1 ms)

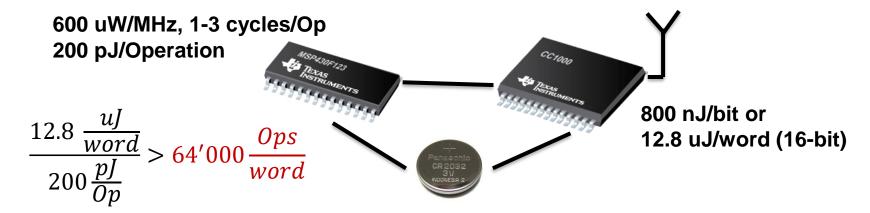
$$L_{Burst}[bits] \gg T_{Startup} \cdot f$$

- Example: TI-CC1000
 - $T_{Startup}$ =250 us
 - f=38.4 kbit/s

 $L_{Burst} \gg 10 \ bit$

			CC1000		
Parameter	Min.	Tvp.	Personances	Unit	Condition / Note
PLL turn-on time, crystal oscillator on in power down mode		250		μS	Crystal oscillator running
Current Consumption, crystal osc. And bias		860		μА	
Current Consumption, crystal osc., bias and synthesiser, RX/TX		4/5 5/6		mA mA	< 500 MHz > 500 MHz

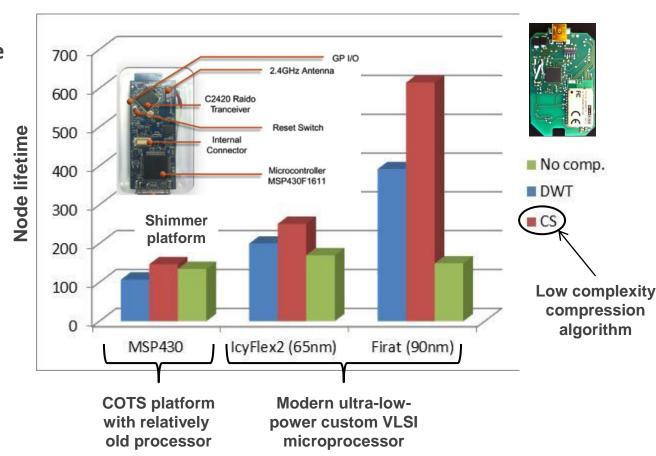

7 Processing Energy vs. Transmit Energy


Sensor data is usually highly redundant (i.e., compressible)

- Data reduction through analysis and/or compression
- Requires computations (i.e., consumes power)
- Computations can often be done either after transmission on the central node *or* before transmission on the sensor node

What is the cost of computation vs. the cost of transmission??

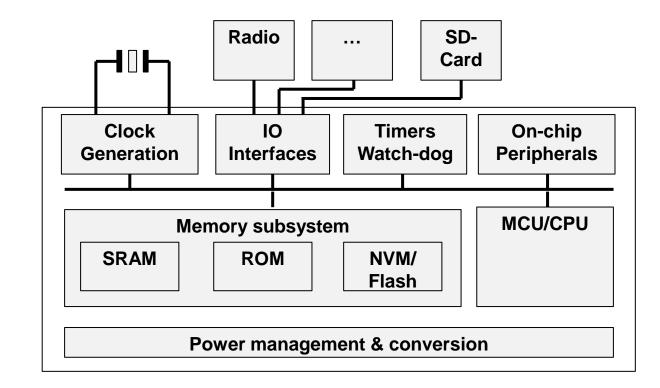
Example: MSP430 16-bit low-power uController with TI-CC1000 transceiver



7 Lifetime extension from compression

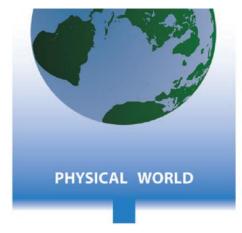
Compression requires processing resources and consumes power

- Energy savings from reduced radio activity can get eaten up by
 - Poor energy efficiency of the embedded processor
 - Overly complex compression/analysis algorithms
- Burden shifts to more energy-efficient data processing


[Rincon et al., ITAB, 2011]

Embedded Low-Power Microcontrollers: Overview and Low-Power Modes

Low Power Sensor Nodes: System Components



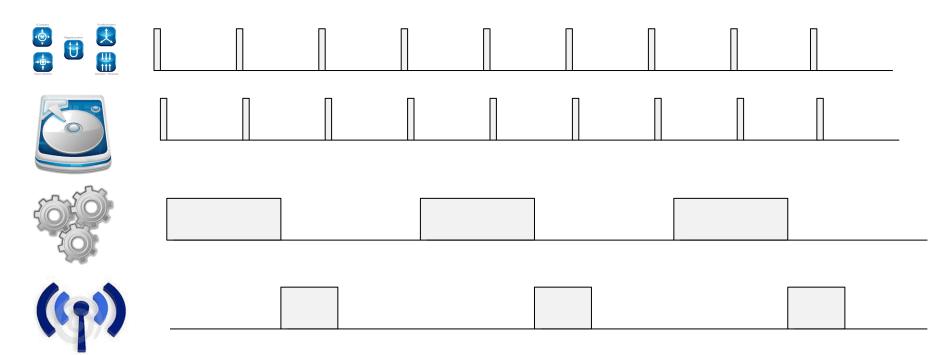
- Microcontroller
- Memory subsystem
 - SRAM
 - ROM
 - FLASH
- IO interfaces
- Clock generation and clock distribution
- Timers
- Interface peripherals
- Power management

Wireless Sensor Nodes: Operation

- Sampling/sensing
- Processing data on the node
- Storing data
- Transmitting data
- Waiting for an event or a fixed period

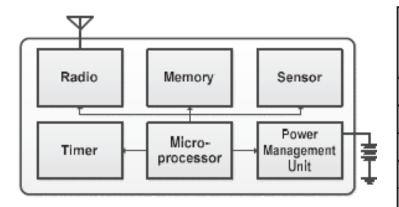
Handled by various system components in a more or less independent fashion from the processor core

Processing schedules

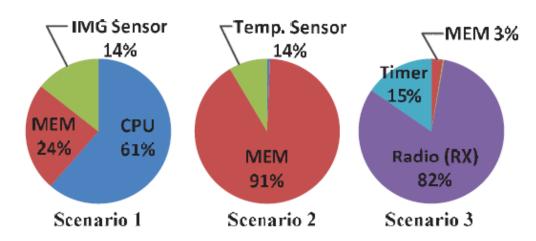


- A typical application schedule
 - Data is sampled in regular intervals (typically relatively slowly)
 - Data acquisition handled by the core itself
 - Smart data converter with direct memory access (DMA)
 - Data can be processed each time a new sample arrives OR in larger junks (typically more efficient)
 - Processing speed is governed by deadlines
 - Processing speed (clock frequency) adjusted precisely to meet the deadline
 - Processing in short bursts with high clock frequency while sleeping in between

Wireless Sensor Nodes: Operation Scheduling



- Multiple parallel processes (partially overlapping) with different characteristics
 - Sampling and storage of data: on small chunks of data with hard real-time constraints
 - Processing and transmission: more energy efficient on larger data blocks
- Idle periods almost unavoidable
- Operation is driven by interrupts



Power Consumption Depends on Usage Scenario

Unit	Scenario 1 (Surveillance)	Scenario 2 (Temp. monitor)	Scenario 3 (Temp. monitor /w symmetric communication)
(wake up period)	5 sec	10 min	10 min
Microprocessor	100k inst. / wake up	2k inst. / wake up	2k inst. / wake up
Memory	16kB, 229nW	1kB, 14.3nW	1kB, 14.3 nW
Timer	Not used	Not used	8.6 nW
Radio – TX	1 kb / wake up	100 b / 1 hr	100 b / 1 hr
Radio – RX	Not used	Not used	1.64mW for mismatch
Image Sensor	1 frame / wake up	Not used	Not used
Temperature Sensor	Not used	1 meas. / wake up	1 meas. / wake up

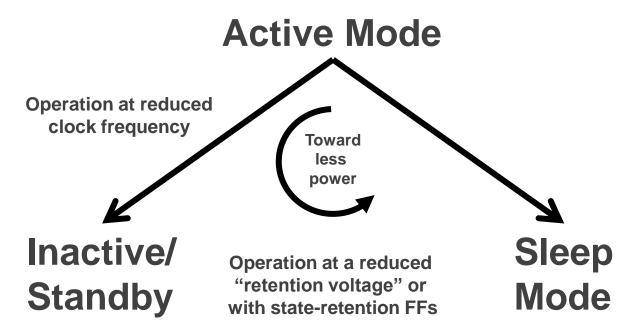
Optimization and Design Strategy for Low Power

- Start from a "reasonable" system configuration
- Decide on a processing schedule that maximizes the exploitation of low power modes available from the system
- Identify the distribution of power consumption among the system components and processing phases
- Address the part or phase with the largest contribution first by

Reminder: Sources of Power Consumption

- Dynamic power consumption
 - Active power of functional blocks
 - Power is consumed while circuit/component is active (operating)
 - Without DVFS: Power depends (linearly) on the operating frequency
 - With DVFS: Power depends super-linearly on frequency/voltage (often not supported in ULP embedded systems due to complexity of generating a variable voltage in an efficient way)
 - Power for clock generation and clock distribution
- Static power consumption
 - Static power of digital functional blocks
 - Power is consumed during both active and inactive periods
 - Often negligible while circuit is active (except at low frequencies)
 - Without power-gating: dominant (only) power during inactive periods
 - With power gating: can be very low
 - Static power consumed in analog circuitry (e.g., amplifiers)

Low-Power and Sleep Modes

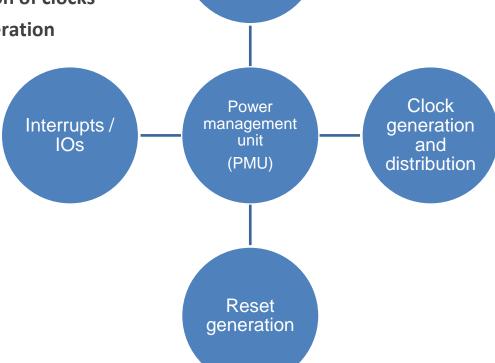


Low power modes typically differ in

- Energy consumption
- CPU activity
- Reaction time
- Wake-up triggers
- Active peripherals
- Available clock sources

Low-Power and Sleep Modes: Two main tuning knobs

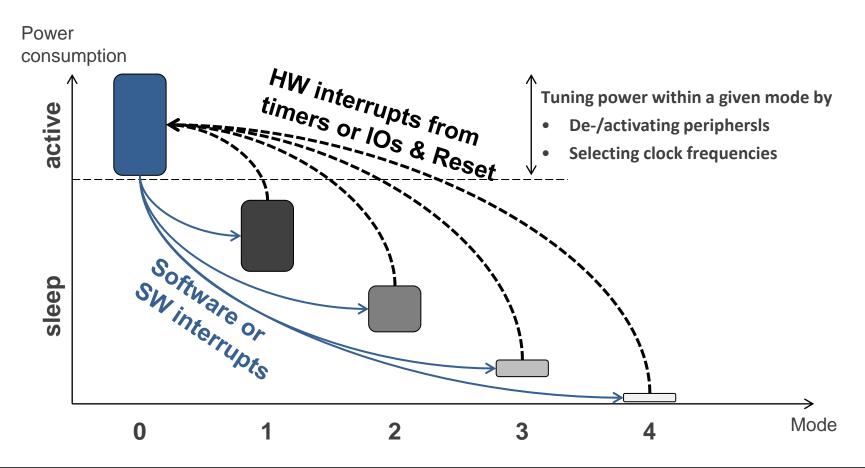
- Clock is deactivated, but supply is still on
 - No activity
 - State is retained
 - Rapid wakeup


- Clock is deactivated and supply is off (power-gating)
 - No activity
 - No state retention
 - Slow wakeup
 - Power-up delay
 - Need to restore state

Components involved in energy management

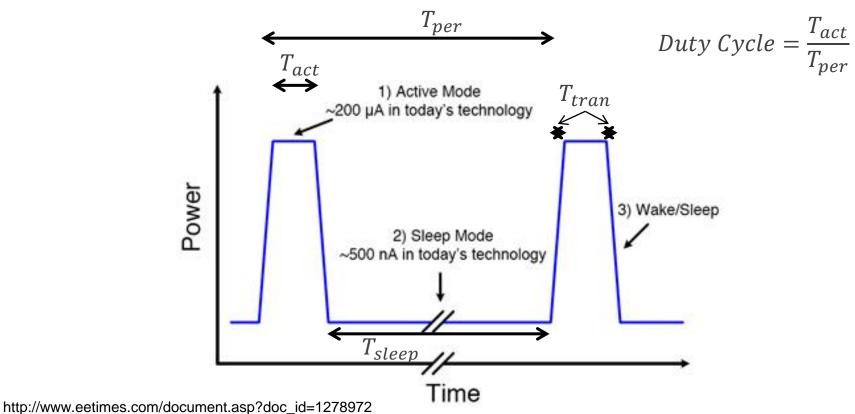
 PMU: controls and coordinates the transition between power modes

- Voltage regulation
- Stabilization of clocks
- Reset generation

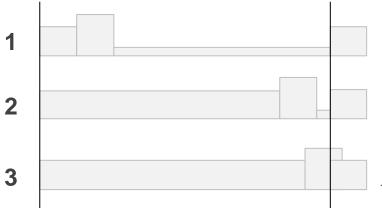

Voltage regulators

Transition between power modes

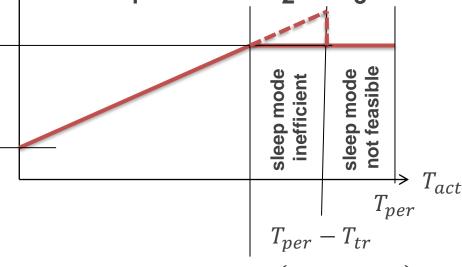
Different sleep modes and one configurable "active" mode:


- Transition from "active" into one of the "sleep" modes: triggered by software
- Waking up "sleep" to "active": triggered by hardware

Transition between power modes


- Break energy consumption into three parts
 - 1) active energy
 - 2) sleep energy
 - 3) wake/sleep transition energy
 (energy for moving between sleep and active modes)

Power budget


- Power figures for active/transition/sleep: P_{act} , P_{tr} , P_{sleep}
 - Assume: $P_{tran} = P_{act}$
- Time for period/active/transition: T_{act} , T_{tr} , $T_{per} = T_{act} + T_{sleep}$

$$P = \frac{T_{act}P_{act} + T_{tr}(P_{tr} - P_{sleep}) + T_{sleep}P_{sleep}}{T_{per}}$$

$$P = \frac{T_{tr}(P_{tr} - P_{sleep}) + T_{sleep}P_{sleep}}{T_{per}}$$

$$T_{per} - \frac{T_{tr}P_{tr} + P_{sleep}(T_{sleep} - T_{tr})}{P_{act}}$$

Embedded Low-Power Microcontrollers: Key Components

Active Power Consumption (COTS products)

Prominent examples:

PIC Microcontroller


- 8 bit
- 16 bit
- 32 bit

MSP 430 Microcontroller

• 16 bit

More and more vendors offer ARM core based solutions

ARM Microcontroller Series

- ARM Cortex M0(+)
- ARM Cortex M3

Active power consumption (CPU/Clock Generation/Regulators)

ARM based: 80-250 uA/MHz @ 1.8 - 3.3V

Older models: 250-500 uA/MHz @ 1.8 - 3.3V

Comparison of COTS MCUs to State-of-the-Art Processor Cores

State-of-the-art cores generally outperform available microcontrollers

- COTS microcontrollers often use mature technology nodes (>130nm)
- Core-only specifications and research cores often exclude peripherals/SRAM/clocking
- Commercial MCUs typically do not yet exploit voltage/frequency scaling

ا		Energy per Ops @ 1.0 V	Technology
research	TamaRISC	12.1 pJ	90 nm
ese	16-bit [Kwong,2011]	> 47 pJ	130 nm
_	32-bit [lckes,2011]	19.7 pJ-27 pJ	65 nm

	ARM Cortex-M0 Implementation Data***					
nercial			90LP 7-track, typical 1.2v, 25C)	40LP 9-track, typical 1.1v, 25C)		
nn	Dynamic Power	66µW/MHz	12.5µW/MHz	5.3µW/MHz		
COL	Floorplanned Area	0.11 mm ²	0.03 mm ²	0.008 mm ²		

Best ARM M0+ based COTS MCU from ST Micro with approximately 85 uW/MHz including memory & clocking

Motivation:

- Clock frequency determines power of active components
- Clock generation and distribution can be a significant part of the overall power consumption (e.g., when most of the chip is inactive)

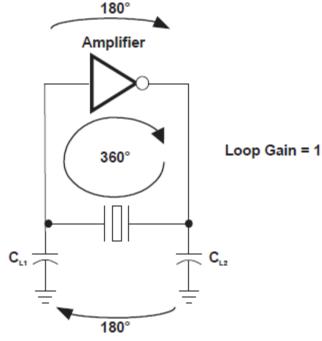
Performance criteria of clocking subsystem

- Power consumption
- Flexibility to generate adjust frequency to the needs
- Agility to change frequency during operation
- Accuracy compared to a golden reference: measured in parts-per-million (PPM)
- Startup time: time to restore a stable clock after shutdown

Tradeoffs associated with clock generation

- Fast clock vs. slow clock: jitter, frequency, basis for derived clocks
- On-chip clock generation vs. off-chip components: cost, space on PCB, power consumption of external components, accuracy
- Fixed vs. programmable: power consumption, area, analog components, ability to precisely adjust to the needs

Quartz based frequency reference


- Available in some standard frequencies from kHz to >100 MHz
- Accuracy 5-20 ppm
- High cost and power consumption

External quartz & capacitors with on-chip oscillator

- On-chip feedback amplifier (often two for high and low target frequencies)
- Accuracy 1-20 ppm (low cost)
- Startup time in the milliseconds (ms) range and increases for lower frequencies
- Power consumption
 - Linear in frequency
 - Typical values in the ~50uW / MHz range
 - STM32L15xx6: <u>1.1uA@3V</u> for 32 KHz

http://www.st.com/web/en/resource/technical/document/datasheet/CD00277537.pdf http://www.gaw.ru/pdf/Tl/app/msp430/slaa081.pdf

Example: MSP430 oscillator startup times

OSCILLATOR FREQUENCY	OSCILLATOR TYPE	Vcc (V)	START-UP TIME (ms)
32 kHz	Quartz crystal	3	201
C = none	Quartz Crystai	5	96.4
455 kHz	Ceramic resonator	3	1.77
C = 82 pF	Ceramic resonator	5	_
1 MHz	Ouertz en retel	3	5.82
C = 47 pF	Quartz crystal	5	3.81
4 MHz	Quartz crystal	3	4.54
C = 56 pF	Quartz Crystal	5	3.07
8 MHz	Quartz crystal	3	1.97
C = 39 pF	Qualiz Crystal	5	1.27

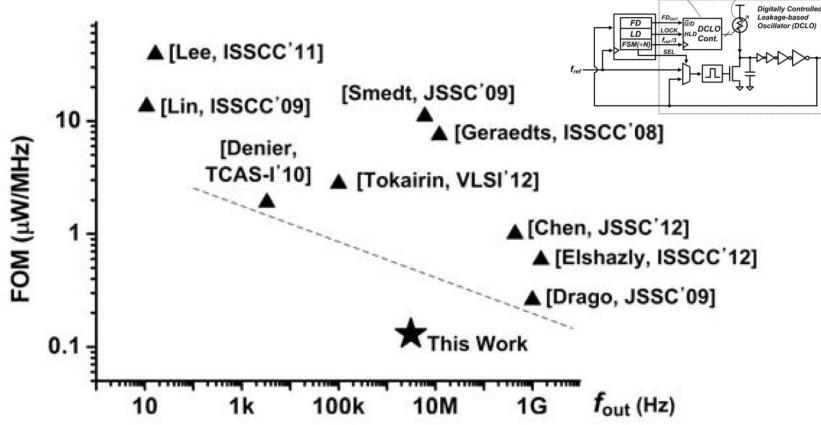


On-chip digitally controlled oscillator (DCO)

- Programmable ring oscillator
 - Based on RC delays (low-power)
 - Few preselected frequency settings
 - DC reference controlled by an external or internal reference resistor (for calibration)
- Mostly used for low power consumption at very low frequencies (e.g., during sleep periods as clock source for wakeup timers)
- Startup times similar to clock period (1MHz: 1us, 100kHz: 10us)
- Power consumption: ~50uW / MHz range
- Accuracy is very poor: few % (@1MHz: 10'000 ppm)

- Reference clock with synchronous clock divider
 - Can only reduce clock frequency compared to reference input
 - Only division by integers (coarse grained)
 for clocks not too far below the reference.

- Reference clock with Phase Locked Loop (PLL)
 - PLL is comprised of
 - Voltage Controlled Oscillator
 - Phase/frequency detector
 - Loop filter
 - Alternatives:
 - AD-PLL: all digital implementation
 - Frequency locked loop (FLL): phase not locked to the reference oscillator



Circuits for Clock Generation (Research State-of-the-Art)

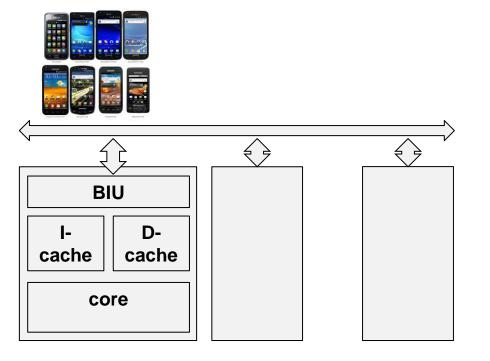
DCLO Controlle

- Figure of merit (FOM): uW/MHz
- Main contributor to power consumption is the DCO
 - Implementations based on leakage currents

Dong-Woo Jee; Sylvester, D.; Blaauw, D.; Jae-Yoon Sim, "A 0.45V 423nW 3.2MHz multiplying DLL with leakage-based oscillator for ultra-low-power sensor platforms," Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International

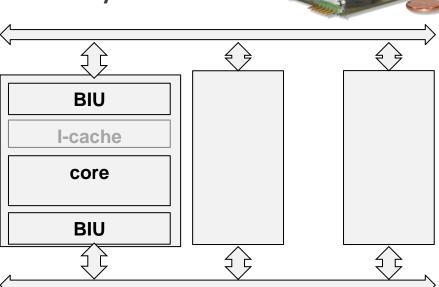
- Example: TI-MSP430 clock generation and distribution subsystem
 - Different clock
 sources generate
 different frequencies
 - Rapid selection of the best clock for different system components

Memory/Storage Subsystem and Components



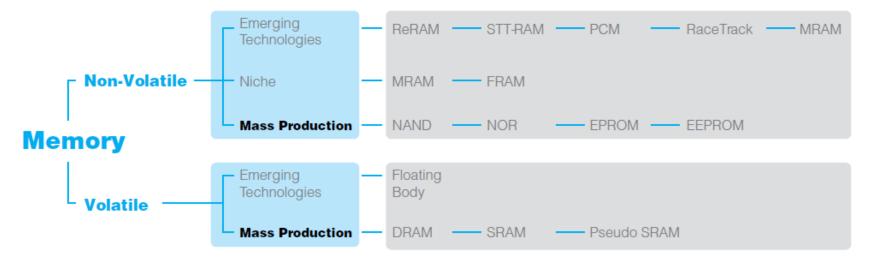
Architectures of the storage subsystem of two types of embedded systems

Program and data: shared address space (von Neumann - like)

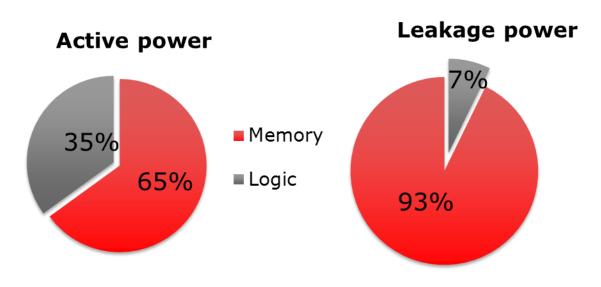

High performance

Often single bus interface, but large caches for data and instruction

Ultra low power


- Harvard architecture core with separate bus interfaces for data and instruction
- Multiple or multi-layer busses
- No or only small cache, often only for instructions

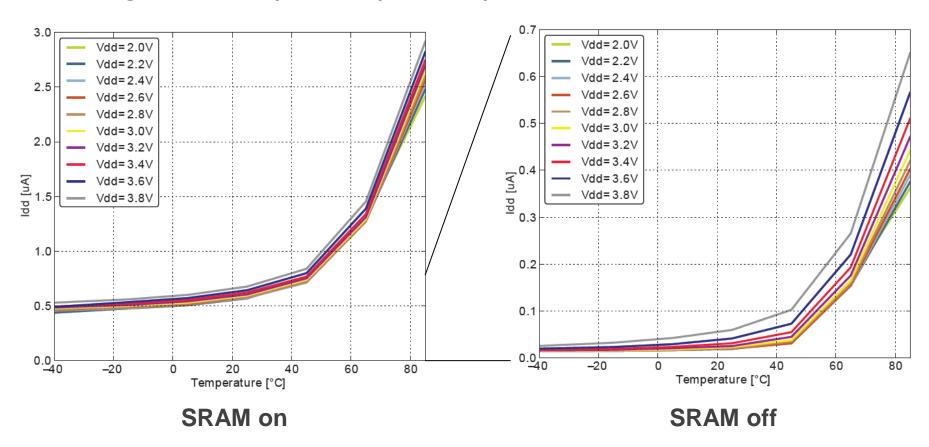
Memory/Storage Subsystem and Components




- Type of information to be stored
 - Program code (instructions)
 - Runtime intermediate variables (data)
 - Acquired data
 - System settings and state (registers in peripherals)
- Different types of storage
 - (Registers)
 - Volatile memory: retains its content only with power on, typically SRAM
 - Non-volatile memory: retains content after power-off

SRAMs Consume a Considerable Amount of Power

typical embedded processor

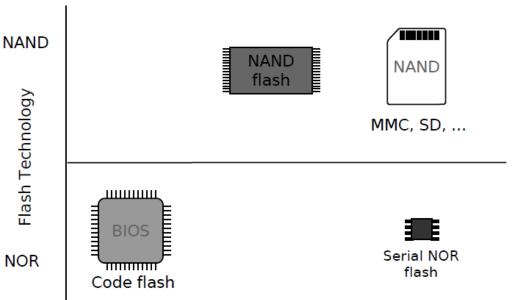

- For embedded processors, memories occupy a large percentage of the silicon area
- Active mode:
 - Data and program memory can consume 2/3 of total power
 - Low-frequency: SRAM leakage becomes visible
- Sleep modes:
 - Generally, no power gating to retain SRAM content
 - SRAM leakage becomes dominates system power consumption (3-4 pJ/bit in 180nm):
 32kByte -> 400nW @ 1.8V

SRAM Leakage over Temperature

Example: EFM32 MCU (ARM-M3) with 32kByte SRAM

- Significant difference leakage reduction when SRAM is disabled
- Leakage increases exponentially with temperature

Non Volatile Memory



- Typically implemented as Flash
 - NOR or NAND flash
- Flash vs. SRAM: Flash has
 - Slower read access
 - Much slower write access
 - Much higher write power

Flash Technology

NOR

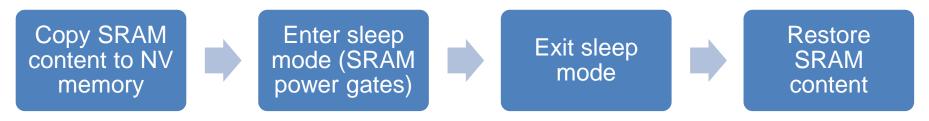
- **NAND Flash**
 - High density, organized in large pages
 - **Used for storing large amounts** of data
 - Usually off chip
- **NOR Flash**
 - Medium density with word access possible
 - Can store program code
 - Program code can be executed directly from Flash

		word-
or	en	ted

Parallel, page-mode

Serial. page-mode

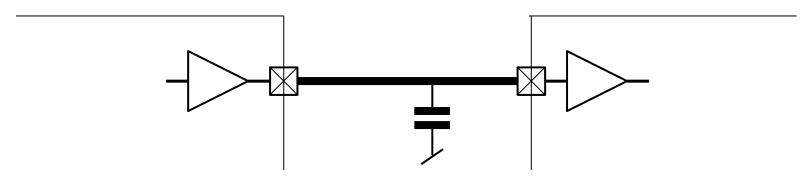
Interface


	NOR	NAND
Memory size	<= 512 Mbit	1–8 Gbit
Sector size	\sim 1 Mbit	\sim 1 Mbit
Output parallelism	Byte/Word/Dword	Byte/Word
Read parallelism	8–16 Word	2 Kbyte
Write parallelism	8–16 Word	2 Kbyte
Read access time	<80 ns	20 μs
Program Time	9 µs/Word	400 μs/page
Erase time	1 s/sector	1 ms/sector

Non Volatile Memory as Deep Sleep Backup

- Almost all components are OFF
- Leakage becomes THE dominant factor in power consumption
- Memory (SRAM) is often the largest contributor to leakage:
 - E.g., 3.5 pW/bit with 32kByte => 900 uW
- Memory power gating leads to a loss of data

Flash SRAM based backup:


- Caveat: writing to NV memory requires a lot of energy
 - Transition to deep-sleep is expensive
 - Backup only the required data
- Deep-sleep with SRAM backup to NV memory only efficient for long sleep periods
 - Alternative: very small backup SRAM with state retention for essential data (few Bytes)

The cost of off-chip communication

Off-chip communication consumes dynamic power

- IO-pad capacitance is around 2.5-10pF
- Typical voltages for IO-standards: 1.8V, 2.5V, 3.3V

• Energy per transition and pin:

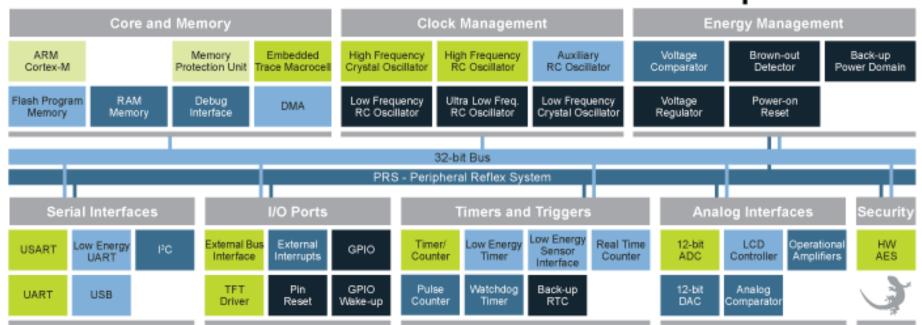
$$E = \frac{1}{2}V_{IO}^2C$$

• Power consumed by 8 IO pins α =50% activity @ f =1 MHz (C = 5pJ, V_{IO} = 1.8V)

$$P_{IO} = \alpha f \frac{1}{2} V_{IO}^2 C = 32uW$$

Hands-on Example: EFM32 ULP MCU: Power Consumption and Low-Power Modes

Energy Micro EFM32LG (Leopard Gecko) MCU Overview



EFM32 is a series of microcontrollers with different capabilities and peripherals

EFM32LG: medium range ULP device

- ARM-M3 low-power 32 bit CPU up to 48MHz
- SRAM and Flash memory (read and write access)
- Clock generation and energy management unit
- Support for many peripherals
- Timer units

EFM32 Leopard Gecko

Energy Micro EFM32LG (Leopard Gecko) MCU Low Power Modes

5 basic energy modes with different default settings for peripherals and clocks

EM0 - Energy Mode 0 (Run mode)

In EM0, the CPU is running and consuming as little as 211 µA/MHz, when running code from flash. All peripherals can be active.

(Sleep Mode)

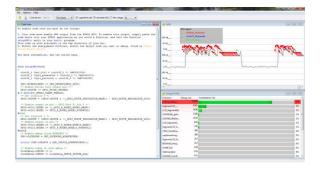
EM1 – Energy Mode 1 In EM1, the CPU is sleeping and the power consumption is only 63 μA/MHz. All peripherals, including DMA, PRS and memory system, are still available.

EM2 - Energy Mode 2 (Deep Sleep Mode)

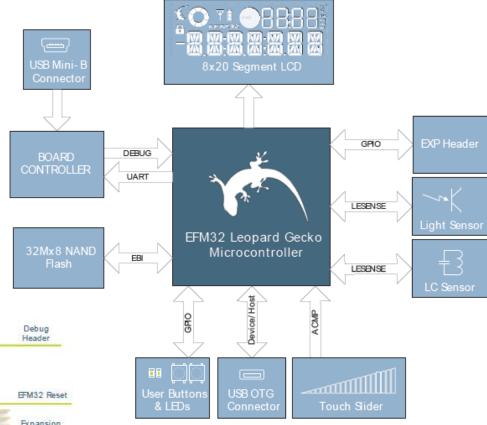
In EM2 the high frequency oscillator is turned off, but with the 32.768 kHz oscillator running, selected low energy peripherals (LCD, RTC, LETIMER, PCNT, LEUART, I²C, LESENSE, OPAMP, USB, WDOG and ACMP) are still available. This gives a high degree of autonomous operation with a current consumption as low as 0.95 µA with RTC enabled. Power-on Reset, Brownout Detection and full RAM and CPU retention is also included.

EM3 - Energy Mode 3 (Stop Mode)

In EM3, the low-frequency oscillator is disabled, but there is still full CPU and RAM retention, as well as Power-on Reset, Pin reset, EM4 wake-up and Brown-out Detection, with a consumption of only 0.65 µA. The low-power ACMP, asynchronous external interrupt, PCNT, and I²C can wake-up the device. Even in this mode, the wake-up time is a few microseconds.


EM4 - Energy Mode 4 (Shutoff Mode)

In EM4, the current is down to 20 nA and all chip functionality is turned off except the pin reset, GPIO pin wake-up, GPIO pin retention, Backup RTC (including retention RAM) and the Power-On Reset. All pins are put into their reset state.


EFM32LG – STK 3600 Evaluation Board & Power Monitor

- EFM32LG990F256 MCU
- Energy Monitoring system for current tracking

- Various peripherals and IOs
- Power sources:
 - Battery
 - USB
 - 0.03 F supercap for backup